Genome-Wide Identification of Small RNAs in Bifidobacterium animalis subsp. lactis KLDS 2.0603 and Their Regulation Role in the Adaption to Gastrointestinal Environment
نویسندگان
چکیده
OBJECTIVE Bifidobacteria are one of the predominant bacterial species in the human gastrointestinal tract (GIT) and play a vital role in the host's health by acting as probiotics. However, how they regulate themselves to adapt to GIT of their host remains unknown. METHODS Eighteen bifidobacterial strains were used to analyze their adaptive capacities towards simulated GIT environment. The strain with highest survival rate and adhesion ability was selected for comparative genome as well as transcriptomic analysis. RESULTS The Bifidobacterium animalis subsp. lactis KLDS 2.0603 strain was demonstrated to have the highest survival rate and adhesion ability in simulated GIT treatments. The comparative genome analysis revealed that the KLDS 2.0603 has most similar whole genome sequence compared with BB-12 strain. Eleven intergenic sRNAs were identified after genomes prediction and transcriptomic analysis of KLDS 2.0603. Transcriptomic analysis also showed that genes (mainly sRNAs targeted genes) and sRNAs were differentially expressed in different stress conditions, suggesting that sRNAs might play a crucial role in regulating genes involved in the stress resistance of this strain towards environmental changes. CONCLUSIONS This study first provided deep and comprehensive insights into the regulation of KLDS 2.0603 strain at transcription and post-transcription level towards environmental.
منابع مشابه
Effect of Whey Permeate and Yeast Extract on Metabolic Activity of Bifidobacterium Animalis Subsp. Lactis Bb 12
In fermented products containing Bifidobacteria, factors such as organic acid concentration and b-galactosidase activity are important in the development of flavor and texture of final products. Both the process conditions and medium components have significant effects on fluctuation of such factors. The effects of whey permeate powder and yeast extract concentrations, as nitrogen sources was i...
متن کاملDraft Genome Sequence of Bifidobacterium animalis subsp. lactis Strain CECT 8145, Able To Improve Metabolic Syndrome In Vivo
Bifidobacterium animalis subsp. lactis strain CECT 8145 is able to reduce body fat content and improve metabolic syndrome biomarkers. Here, we report the draft genome sequence of this strain, which may provide insights into its safety status and functional role.
متن کاملAdaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach.
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of bacteria in the human colonic niche. Bif...
متن کاملEffect of kynurenic acid on the viability of probiotics in vitro.
Probiotics are bacteria that are commercially available as dietary supplements. One of the important properties of probiotics is their ability to survive in the intestine. Recent evidence has identified kynurenic acid (KYNA) as a bactericidal constituent of intestinal fluid. These data led us to study the influence of KYNA on the viability of selected probiotics. We found that KYNA supported th...
متن کاملEffect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model
Exopolysaccharide (EPS)-producing bifidobacteria, particularly Bifidobacterium animalis subsp. lactis strains, are used in the functional food industry as promising probiotics with purported beneficial effects. We used three isogenic strains of B. animalis subsp. lactis, with different EPS producing phenotypes (mucoid-ropy and non-ropy), in order to determine their capability to survive the mur...
متن کامل